Biallellic variants in CACNA1S cause fetal akinesia sequence, progressive hydrops and stillbirth

Author:

Seed Emma12ORCID,Noon Fallon3,Milnes Di4,Roscioli Tony5ORCID,Kristensen Karl1,Ellwood David16,DaSilva Costa Fabricio16

Affiliation:

1. Maternal Fetal Medicine The Gold Coast University Hospital Southport Queensland Australia

2. The Sunshine Coast University Hospital Birtinya Queensland Australia

3. Clinical Genetics Advanced Trainee Genetic Health Queensland Herston Queensland Australia

4. Clinical Geneticist Genetic Health Queensland Herston Queensland Australia

5. Prince of Wales Hospital and Community Health Services NSW Health Pathology Randwick Genomics Randwick New South Wales Australia

6. Griffith University School of Medicine Gold Coast Queensland Australia

Abstract

AbstractFetal arthrogryposis is a well‐recognised ultrasonographic phenotype, caused by both genetic, maternal and extrinsic factors. When present with fetal growth restriction, pulmonary hypoplasia and multiple joint contractures, it is often referred to as fetal akinesia deformation sequence (FADS). Historically, elucidating genetic causes of arthryogryposis/FADS has been challenging; there are now more than 150 genes known to cause arthrogryposis through myopathic, neuromuscular and metabolic pathways affecting fetal movement. FADS is associated with over 400 medical conditions making prenatal diagnosis challenging. Here we present a case of FADS diagnosed at 19 weeks gestation with progression to severe fetal hydrops and stillbirth at 26‐weeks gestation. Initial investigations including combined first trimester screening, TORCH (infection) screen and chromosomal microarray were normal. Trio whole exome sequencing (WES) detected compound heterozygous likely pathogenic CACNA1S gene variants associated with autosomal dominant (AD) and autosomal recessive (AR) congenital myopathy and FADS. To our knowledge, this is the first prenatal diagnosis of this condition.

Publisher

Wiley

Subject

Genetics (clinical),Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3