Artificial intelligence‐based diagnosis in fetal pathology using external ear shapes

Author:

Hennocq Quentin12345ORCID,Garcelon Nicolas1,Bongibault Thomas15,Bouygues Thomas15,Marlin Sandrine146,Amiel Jeanne146,Boutaud Lucile46,Douillet Maxime1,Lyonnet Stanislas146,Pingault Vèronique146,Picard Arnaud234,Rio Marlèe146,Attie‐Bitach Tania146ORCID,Khonsari Roman H.12345,Roux Nathalie146ORCID

Affiliation:

1. Imagine Institute INSERM UMR1163 Paris France

2. Service de Chirurgie Maxillo‐Faciale et Chirurgie Plastique Hôpital Necker – Enfants Malades Assistance Publique – Hôpitaux de Paris Paris France

3. Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE Filière Maladies Rares TeteCou Paris France

4. Faculté de Médecine Université de Paris Cité Paris France

5. Laboratoire ‘Forme et Croissance Du Crâne’ Hôpital Necker‐Enfants Malades Assistance Publique‐Hôpitaux de Paris Paris France

6. Service de Médecine Génomique des Maladies Rares Hôpital Necker – Enfants Malades Assistance Publique – Hôpitaux de Paris Paris France

Abstract

AbstractObjectiveHere we trained an automatic phenotype assessment tool to recognize syndromic ears in two syndromes in fetuses—=CHARGE and Mandibulo‐Facial Dysostosis Guion Almeida type (MFDGA)—versus controls.MethodWe trained an automatic model on all profile pictures of children diagnosed with genetically confirmed MFDGA and CHARGE syndromes, and a cohort of control patients, collected from 1981 to 2023 in Necker Hospital (Paris) with a visible external ear. The model consisted in extracting landmarks from photographs of external ears, in applying geometric morphometry methods, and in a classification step using machine learning. The approach was then tested on photographs of two groups of fetuses: controls and fetuses with CHARGE and MFDGA syndromes.ResultsThe training set contained a total of 1489 ear photographs from 526 children. The validation set contained a total of 51 ear photographs from 51 fetuses. The overall accuracy was 72.6% (58.3%–84.1%, p < 0.001), and 76.4%, 74.9%, and 86.2% respectively for CHARGE, control and MFDGA fetuses. The area under the curves were 86.8%, 87.5%, and 90.3% respectively for CHARGE, controls, and MFDGA fetuses.ConclusionWe report the first automatic fetal ear phenotyping model, with satisfactory classification performances. Further validations are required before using this approach as a diagnostic tool.

Funder

Agence Nationale de la Recherche

National University of Singapore

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3