Affiliation:
1. Department of Chemistry University of Chicago Chicago IL 60615 USA
Abstract
AbstractThe complexity of eukaryotic organisms is intricately tied to transcriptome‐level processes, notably alternative splicing and the precise modulation of gene expression through a sophisticated interplay involving RNA‐binding protein (RBP) networks and their RNA targets. Recent advances in our understanding of the molecular pathways responsible for this control have paved the way for the development of tools capable of steering and managing RNA regulation and gene expression. The fusion between a rapidly developing understanding of endogenous RNA regulation and the burgeoning capabilities of CRISPR‐Cas and other programmable RBP platforms has given rise to an exciting frontier in engineered RNA regulators. This review offers an overview of the existing toolkit for constructing synthetic RNA regulators using programmable RBPs and effector domains, capable of altering RNA sequence composition or fate, and explores their diverse applications in both basic research and therapeutic contexts.
Funder
National Institute of Biomedical Imaging and Bioengineering
National Institutes of Health
National Science Foundation