Properties of the Ammann–Beenker Tiling and its Square Periodic Approximants

Author:

Jagannathan Anuradha1ORCID,Duneau Michel2

Affiliation:

1. Laboratoire de Physique des Solides Université Paris-Saclay 91405 Orsay France

2. Centre de Physique Théorique CNRS Ecole polytechnique Institut Polytechnique de Paris 91120 Palaiseau France

Abstract

AbstractOur understanding of physical properties of quasicrystals owes a great deal to studies of tight‐binding models constructed on quasiperiodic tilings. Among the large number of possible quasiperiodic structures, two dimensional tilings are of particular importance – in their own right, but also for information regarding properties of three dimensional systems. We provide here a users manual for those wishing to construct and study physical properties of the 8‐fold Ammann–Beenker quasicrystal, a good starting point for investigations of two dimensional quasiperiodic systems. This tiling has a relatively straightforward construction. Thus, geometrical properties such as the type and number of local environments can be readily found by simple analytical computations. Transformations of sites under discrete scale changes – called inflations and deflations – are easier to establish compared to the celebrated Penrose tiling, for example. We have aimed to describe the methodology with a minimum of technicalities but in sufficient detail so as to enable non‐specialists to generate quasiperiodic tilings and periodic approximants, with or without disorder. The discussion of properties includes some relations not previously published, and examples with figures.

Publisher

Wiley

Reference50 articles.

1. B. Grünbaum G. C. Shepard Tilings and Patterns(Freeman New York)1987.

2. Two-dimensional quasicrystal with eightfold rotational symmetry

3. Hubbard models for quasicrystalline potentials

4. U. Grimm M. Schreiber inbook Quasicrystals: Structure and Physical Properties Ed. H.-R. Trebin Wiley-VCH 2003.

5. The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3