Proteome‐Wide Fragment‐Based Ligand and Target Discovery

Author:

Forrest Ines1ORCID,Parker Christopher G.1ORCID

Affiliation:

1. Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA

Abstract

AbstractChemical probes are invaluable tools to investigate biological processes and can serve as lead molecules for the development of new therapies. However, despite their utility, only a fraction of human proteins have selective chemical probes, and more generally, our knowledge of the “chemically‐tractable” proteome is limited, leaving many potential therapeutic targets unexploited. To help address these challenges, powerful chemical proteomic approaches have recently been developed to globally survey the ability of proteins to bind small molecules (i. e., ligandability) directly in native systems. In this review, we discuss the utility of such approaches, with a focus on the integration of chemoproteomic methods with fragment‐based ligand discovery (FBLD), to facilitate the broad mapping of the ligandable proteome while also providing starting points for progression into lead chemical probes.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3