Direct, Quantitative, and Base‐Resolution Sequencing of DNA and RNA Modifications

Author:

Xu Haiqi12,Song Chun‐Xiao12ORCID

Affiliation:

1. Ludwig Institute for Cancer Research Nuffield Department of Medicine University of Oxford

2. Target Discovery Institute Nuffield Department of Medicine University of Oxford Oxford OX3 7FZ U.K

Abstract

AbstractCellular DNA and RNA are decorated with diverse chemical modifications, which add new layers to gene regulation and play crucial roles across development and disease progression. Interest in understanding the functions of DNA and RNA modifications, as well as the related molecular mechanisms, has been growing, driving progress in developing chemical and biochemical tools to detect specific modifications. New technologies are important not only for uncovering biological functions, but also for driving conceptual revolutions. In this review, we highlighted our recent advances in developing new chemical tools to detect DNA and RNA modifications in a direct, quantitative, and base‐resolution manner. These includes a novel borane reduction chemistry for DNA methylation sequencing; new cytosine modificaiton oxdation chemistry for enhanced DNA hydroxymethylation sequencing; and a novel bromoacrylamide cyclization chemistry for RNA pseudouridylation sequencing. We present a mechanistic overview of these tools and their applications in epigenetic and epitranscriptomic research.

Funder

Ludwig Institute for Cancer Research

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3