Copper(II)‐TEMPO Interaction

Author:

Mehara Jaya1ORCID,Roithová Jana1ORCID

Affiliation:

1. Department of Spectroscopy and Catalysis Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands

Abstract

AbstractCopper(II) complexes with N‐oxyl reactants such as TEMPO can selectively oxidize alcohols to aldehydes or ketones. The proposed copper intermediates of the oxidation reaction were extensively theoretically studied, but they were never experimentally detected. Here, we present an analysis of “frozen” intermediates that contain alcohols without α‐hydrogen atoms, thus preventing oxidation. The copper(II)‐TEMPO complexes with a bipyridine‐type ancillary ligand were isolated by electrospray ionization mass spectrometry and investigated spectroscopically by cryogenic photodissociation spectroscopy. The vibrational characteristics of the complexes suggest that TEMPO retains its unpaired electron even upon coordination with copper(II). In agreement, the electronic photodissociation spectra of the TEMPO‐copper(II) complexes show a characteristic band for gaseous copper(II) complexes. These results contradict interpretations of some previous density functional theory (DFT) analyses of possible reaction intermediates. The experimental data were confronted with theoretical results obtained by pure DFT (OPBE, TPSS) and hybrid DFT (TPSSH, B3LYP) calculations. The methods favor different ground states and capture various aspects of the experimental results demonstrating a multiconfigurational character of the copper(II)‐TEMPO complexes.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3