Object Constraint Language based test case optimization with modified Average Percentage of Fault Detection metric

Author:

Jin Kunxiang1ORCID,Lano Kevin1

Affiliation:

1. Department of Informatics King's College London London UK

Abstract

AbstractTesting is one of the most time‐consuming and unpredictable processes within the software development life cycle. As a result, many test case optimization (TCO) techniques have been proposed to make this process more scalable. Object Constraint Language (OCL) was initially introduced as a constraint language to provide additional details to Unified Modeling Language models. However, as OCL continues to evolve, an increasing number of systems are being expressed by this language. Despite this growth, a noticeable research gap exists for the testing of systems whose specifications are expressed in OCL. In our previous work, we verified the effectiveness and efficiency of performing the test case prioritization (TCP) process for these systems. In this study, we extend our previous work by integrating the test case minimization (TCM) process to determine whether TCM can also benefit the testing process under the context of OCL. The evaluation of TCO approaches often relies on well‐established metrics such as the average percentage of fault detection (APFD). However, the suitability of APFD for model‐based testing (MBT) is not ideal. This paper addresses this limitation by proposing a modification to the APFD metric to enhance its viability for MBT scenarios. We conducted four case studies to evaluate the feasibility of integrating the TCM and TCP processes into our proposed approach. In these studies, we applied the multi‐objective optimization algorithm NSGA‐II and the genetic algorithm independently to the TCM and TCP processes. The objective was to assess the effectiveness and efficiency of combining TCM and TCP in enhancing the testing phase. Through experimental analysis, the results highlight the benefits of integrating TCM and TCP in the context of OCL‐based testing, providing valuable insights for practitioners and researchers aiming to optimize their testing efforts. Specifically, the main contributions of this work include the following: (1) we introduce the integration of the TCM process into the TCO process for systems expressed by OCL. This integration benefits the testing process further by reducing redundant test cases while ensuring sufficient coverage. (2) We comprehensively analyze the limitations associated with the commonly used metric, APFD, and then, a modified version of the APFD metric has been proposed to overcome these weaknesses. (3). We systematically evaluate the effectiveness and efficiency of OCL‐based TCO processes on four real‐world case studies with different complexities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3