Design theory and numerical analysis of earthquake‐resilient joint with slotted bolted connection

Author:

Wu Jianbin1ORCID,Liu Ruyue1ORCID,Yan Guiyun1,Lai Qiulan1

Affiliation:

1. Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil Engineering Fujian University of Technology Fuzhou China

Abstract

SummaryBolted connections are preferred in prefabricated steel structures with the advantages of quality control and convenient construction. An innovative type of earthquake‐resilient joint with slotted bolted connection (ERJ‐SBC) is proposed to achieve damage control and improve the ductile behavior of steel structures. The bending moment is assumed to be mainly transferred by the flange segments of SBC while the shear force is carried by the web segments. The energy dissipation capacity of ERJ‐SBC is provided by the initial frictional sliding and inelastic axial deformation of SBC under larger displacement. Design theory is proposed to ensure that inelastic deformation is concentrated in SBC while other structural members remain elastic. The influences of the length of slotted holes, bolt pretension, friction coefficient, and the thickness and width of the sliding plate are investigated through the numerical analysis of 44 FE examples. The calculation of the critical length of slotted holes for the ductile rotation behavior of ERJ‐SBC is derived and verified. Results demonstrate that the mechanism of bolted connection shifts from friction resistance to bearing resistance when bolts collide with slotted holes, and the friction slippage behavior with slotted holes benefits the hysteresis behavior, deformation capacity, and rotation behavior. The proposed calculation methods for the mechanical behavior of ERJ‐SBC could achieve good accuracy with simulation results. A reasonably well‐designed ERJ‐SBC could have good bearing capacity and rotation behavior, and it could also achieve damage control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Science Foundation of Fuzhou

Publisher

Wiley

Subject

Building and Construction,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3