Artificial neural networks reconstruct missing perikymata in worn teeth

Author:

Modesto‐Mata Mario12ORCID,de la Fuente Valentín Luis2ORCID,Hlusko Leslea J.1ORCID,Martínez de Pinillos Marina13ORCID,Towle Ian1ORCID,García‐Campos Cecilia14ORCID,Martinón‐Torres María15ORCID,Bermúdez de Castro José María15ORCID

Affiliation:

1. Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) Burgos Spain

2. Universidad Internacional de La Rioja (UNIR) Logroño (La Rioja) Spain

3. Laboratorio de Evolución Humana (LEH) Universidad de Burgos Burgos Spain

4. Facultad de Ciencias Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco Madrid Spain

5. Department of Anthropology University College London London UK

Abstract

AbstractDental evolutionary studies in hominins are key to understanding how our ancestors and close fossil relatives grew from the early stages of embryogenesis into adults. In a sense, teeth are like an airplane's ‘black box’ as they record important variables for assessing developmental timing, enabling comparisons within and between populations, species, and genera. The ability to discern this type of nuanced information is embedded in the nature of how tooth enamel and dentin form: incrementally and over years. This incremental growth leaves chronological indicators in the histological structure of enamel, visible on the crown surface as perikymata. These structures are used in the process of reconstructing the rate and timing of tooth formation. Unfortunately, the developmentally earliest growth lines in lateral enamel are quickly lost to wear once the tooth crown erupts. We developed a method to reconstruct these earliest, missing perilymata from worn teeth through knowledge of the later‐developed, visible perikymata for all tooth types (incisors, canines, premolars, and molars) using a modern human dataset. Building on our previous research using polynomial regressions, here we describe an artificial neural networks (ANN) method. This new ANN method mostly predicts within 2 counts the number of perikymata present in each of the first three deciles of the crown height for all tooth types. Our ANN method for estimating perikymata lost through wear has two immediate benefits: more accurate values can be produced and worn teeth can be included in dental research. This tool is available on the open‐source platform R within the package teethR released under GPL v3.0 license, enabling other researchers the opportunity to expand their datasets for studies of periodicity in histological growth, dental development, and evolution.

Funder

HORIZON EUROPE European Research Council

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3