Enhancement of flame retardancy in ceramic polymer composite materials with ammonium polyphosphate/melamine cyanurate

Author:

Zhou Shitao1,Xu Lang1,Sun Qing1,Zhang Jian1,Sheng Jiawei1ORCID

Affiliation:

1. College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China

Abstract

AbstractTo enhance the flame‐retardant characteristics of ceramifiable polyethylene (PE) composites, a composite flame retardant comprising ammonium polyphosphate (APP) and melamine cyanurate (MCA) was integrated. This addition markedly bolstered their flame‐retardant attributes. A meticulous exploration was conducted to ascertain the impacts of APP and MCA on the ceramifiable PE composites' visible morphology, mechanical robustness, and dimensional constancy, and to study the phase transition and microstructure deformation during sintering. Findings underscored that the amalgamation of APP/MCA markedly enhanced the flame resistance of these ceramifiable composites, registering a limiting oxygen index of 25.6% and achieving the vertical burning test (UL‐94) rating of V‐0. The collaborative flame‐retardant action of APP/MCA significantly enhanced the flame resistance of the PE composites while effectively mitigating the composite's propensity to drip. Upon detailed phase analysis, a eutectic reaction was observed between APP and wollastonite fiber, culminating in the genesis of a novel crystalline phase, calcium pyrophosphate (Ca2P2O7). When subjected to elevated temperatures, glass–ceramics manifest with both crystalline and vitreous phases. The proportion of the vitreous phase plays a pivotal role in influencing the ceramic's overall performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3