Recent Advances on Nitrogen‐Doped Porous Carbons Towards Electrochemical Supercapacitor Applications

Author:

Komal Zafar Hafiza1,Zainab Sara1,Masood Maria1,Sohail Manzar1,Shoaib Ahmad Shah Syed1,Karim Mohammad R.23,O'Mullane Anthony4,Ostrikov Kostya (Ken)4,Will Geoffrey5,Wahab Md A.5

Affiliation:

1. Department of Chemistry School of Natural Sciences National University of Sciences and Technology H-12 Islamabad 44000 Pakistan

2. Center of Excellence for Research in Engineering Materials (CEREM) Deanship of Scientific Research (DSR) College of Engineering King Saud University P. O. Box 800 Riyadh 11421 Saudi Arabia

3. K.A. CARE Energy Research and Innovation Center King Saud University Riyadh 11451 Saudi Arabia

4. School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT) Brisbane QLD 4000 Australia

5. Energy and Process Engineering Laboratory School of Mechanical, Medical and Process Engineering Faculty of Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia

Abstract

AbstractDue to ever‐increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3‐D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N‐doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N‐doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo‐capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high‐performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.

Funder

Australian Research Council

Publisher

Wiley

Subject

Materials Chemistry,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3