Thioalkynes in Ring Forming Reactions

Author:

Peng Lifen1ORCID,Yuan Zhiwen1,Tang Zilong1,Zeng Chunling2,Xu Xinhua2

Affiliation:

1. Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan Hunan 411201 China

2. State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Centre of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China.

Abstract

AbstractOrganic cycles play an important role in chemistry, pharmacology and material science for their unique properties. Construction of organic cycles from thioalkynes attracted increasing attention due to the facile access of thioalkynes. 2H‐Azirines were synthesized successfully from thioalkynyl oxime ethers. Cyclobutanes were formed through chiral titanium catalyzed cycloaddition of thioalkynes. Cyclopentenes were afforded by annulation of thioalkynes. Thioalkynes could be also applied to synthesize thiophenes, oxazoles, benzo[b]thiophenes, 2H‐chromenes, 2‐phenylbenzothiazoles, diazacyclobutene, etc. In this review, construction of organic cycles from thioalkynes were highlighted. Firstly, the property and application of organic cyclic compounds were simply introduced. After presenting the general methods to access organic cycles, applications of thioalkynes as synthons to prepare organic cycles were classified and presented in detail. Based on different kinds of organic cycles obtained from thioalkynes, organic reactions for synthesis of three‐, four‐, five‐, six‐membered as well as fused cycles would be summarized and the plausible reaction mechanisms could be presented if available.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3