Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances

Author:

Alam Nasar1,Noor Tayyaba1ORCID,Iqbal Naseem2ORCID

Affiliation:

1. School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan

2. U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan

Abstract

AbstractElectrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low‐cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long‐term stability, outperforming their nano‐counterparts. This review‘s first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non‐noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon‐based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste‐derived supports for single atom catalysts used in electrochemical reactions, providing a cost‐effective dimension to this vibrant research field. The well‐known design techniques discussed here may help in development of electrocatalysts for effective water splitting.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3