Estimation of conditional power in the presence of auxiliary data

Author:

Li Xin1,Yung Godwin2,Lin Jianchang3ORCID,Zhu Jian4ORCID

Affiliation:

1. Incyte Corporation Wilmington Delaware USA

2. Genentech/Roche South San Francisco California USA

3. Takeda Pharmaceutical Company Limited Cambridge Massachusetts USA

4. Servier Pharmaceuticals Boston Massachusetts USA

Abstract

Conditional power (CP) is a commonly used tool to inform interim decision‐making in clinical trials, but the conventional approach using only primary endpoint data to calculate CP may not perform well when the primary endpoint requires a long follow‐up period, or the treatment effect size changes during the trial. Several methods have been proposed to use additional short term auxiliary data observed at the interim analysis to improve the CP estimation in these situations, however, they may rely on strong assumptions, have limited applications, or use ad hoc choices of information fraction. In this paper we propose a general framework where the true CP formula is first derived in the presence of auxiliary data, and CP estimation is obtained by substituting the unknown parameters with consistent estimators. We conducted extensive simulations to examine the performance of both proposed and conventional approaches using the true CP as the benchmark. As the proposed approach is based on the true underlying CP, the simulations confirmed its superiority over the conventional approach in terms of efficiency and accuracy, especially if observed auxiliary data reflect the change of treatment effect size. The simulations also indicate that the magnitude of improvement in CP estimation is associated with the correlation between auxiliary and primary endpoints and/or the magnitude of the effect size change during the trial.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible seamless 2-in-1 design with sample size adaptation;Journal of Biopharmaceutical Statistics;2024-03-29

2. Incorporating external real-world data (RWD) in confirmatory adaptive design;Journal of Biopharmaceutical Statistics;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3