Advances in making Mn oxide‐coated sands

Author:

Rabenhorst Martin C.1ORCID,Wardrup Jocelyn L.1

Affiliation:

1. Department of Environmental Science & Technology University of Maryland College Park Maryland USA

Abstract

AbstractManganese (Mn) oxide‐coated sand has been suggested as an amendment for scrubbing metals in water filtration beds and also as a less concentrated medium for uniformly amending soils with Mn oxides in mesocosm scale studies. Earlier work at the lab bench scale, using potassium permanganate (KMnO4) solutions that were reduced with sodium (Na) lactate, resulted in sands coated with about 0.13% Mn. The goal of this project was to increase the amount of Mn oxide that could be coated on sand to make it a more useful amendment and also to attempt to scale up the procedure to produce larger (kg) quantities of coated sand. Titration experiments examined the effects of (1) varying the molar ratio of Na lactate to KMnO4, (2) varying the rate at which the titration was accomplished, and (3) varying the concentration (molarity) of the original KMnO4 solution. The results of this work led to an optimal approach utilizing 0.32 M KMnO4 solution that was titrated to a final lactate:permanganate ratio of ∼1.1 with 10% of the lactate being added every 10 min while the suspension was being stirred. The proportion of sand to an initial solution was also increased 5–20 fold to between 50 and 200 g per 100 mL of solution. Applying this method and using a large 20‐ to 30‐L reaction vessel yields sands coated with up to 0.7% Mn in batches 5–10 kg is size, which could be useful as an amendment in mesocosm scale studies, or as a component of treatment filter beds. The examination of various size fractions of the coated sands demonstrated that more Mn was coated on finer sand fractions, which appears to be a function of the particle surface area available for the coating of Mn oxides, and at a rate of 0.3–0.5 µg Mn mm−2 of the particle surface.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3