Prediction, mapping, and implication for better soil organic carbon management in Ethiopia

Author:

Tiruneh Gizachew Ayalew12ORCID,Hanjagi Ashok2,Mumtaz Muhammad3,Reichert José Miguel4ORCID

Affiliation:

1. College of Agriculture and Environmental Sciences Debre Tabor University Debre Tabor Ethiopia

2. Department of Geography and Geoinformatics Bangalore University Bangalore India

3. Department of Public Administration Fatima Jinnah Women University Rawalpindi Pakistan

4. Nuclear Energy Department Universidade Federal de Pernambuco (UFPE) Recife‐PE Brazil

Abstract

AbstractA precise soil organic carbon (SOC) content estimate is crucial soil quality parameter for agricultural produce and ecological safety. Moreover, geospatial modeling of SOC is critical when there are limited laboratory equipment and chemical reagents for soil analysis. This study used geostatistics—ordinary kriging (OK) and inverse distance weighting (IDW)—to map SOC in Libokemkem area, Northwest Ethiopia, for improved SOC management. About 107 soil samples were obtained from the plow layer at a 20‐cm depth and SOC was determined. Statistical Package for Social Sciences version 24.0 was used to generate descriptive statistics, and geostatistical analysis was also performed on the data using ArcGIS platform. The coefficient of determination (R2) and root mean square error (RMSE) derived from the validation of the predicted maps were used to assess the models. The results revealed homogeneity (coefficient of variation < 10%), low (0.12%–1.74%), and optimal (1.74%–4.06%) mean levels of SOC in study area. The OK showed an R2 of 0.74 and an RMSE of 13%, and the IDW revealed an R2 of 0.69 and an RMSE of 14%. The semivariogram results indicate a moderate dependence for SOC with stable, circular, spherical, exponential, and Gaussian models. We conclude that the sustainable monitoring of SOC is significant in enhancing soil quality. However, further study considering all drivers of spatial variability for SOC in the study and other soil sampling approaches improving performance of the prediction models is needed.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3