Economic enhancement and grid‐frequency control of a wind farm‐CAES‐fuel cell‐based hybrid system

Author:

Das Shreya Shree1,Kumar Jayendra1ORCID

Affiliation:

1. School of Electronics Engineering VIT‐AP University Amaravati India

Abstract

AbstractIn the present era, the electrical network faces difficulty owing to the restricted supply of conventional energy resources. Solar and wind power are supremely acceptable renewable energy around the globe due to their cheap availability, zero fuel costs, and environmental safety features. Maintaining power balance in a renewable combined day‐ahead power network becomes challenging owing to the uncertainty of renewable sources, resulting in economic instability. An energy‐storing device is essential for combining renewable sources with existing thermal power plants to control the energy supply and maintain system stability. Any government agency in the deregulated market does not set up energy pricing. The ISO (independent system operator) is the primary organization in the day‐ahead power network that is responsible for collecting energy bids from DISCOs (distribution companies), TRANSCOs (transmission companies), and GENCOs (generation companies). The energy pricing is set by the market regulator at a rate known as Location‐based marginal pricing (LBMP), which provides benefits to GENCOs, and DISCOs as well as the customers. In a deregulated market, the unpredictability of renewable sources affects system profit owing to the creation of instability cost (ISC), induced by mismatching the bidding power production from the renewable plant. To lessen these concerns, the presented approach has proposed an innovative model that employs ideal scheduling of the WF (wind‐farm)‐CAES (compressed‐air‐energy‐storage)‐fuel cell (FC) hybrid systems to enhance system economic profitability while keeping the grid frequency (GF) in the safe zone. The fuel cell acts as the energy‐storing device that can be utilized during high‐demand times on the grid, with the ultimate goal of maximizing profits for the overall system. The CAES system's energy level is separated into four dissimilar points, and this study presents an optimum approach for efficiently using it to maintain grid frequency. The new strategy outperformed the previous methods in all categories. The study was performed using the IEEE 30 bus test system.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3