Estimating protein complex model accuracy based on ultrafast shape recognition and deep learning in CASP15

Author:

Liu Jun1,Liu Dong1,He Guangxing1,Zhang Guijun1

Affiliation:

1. College of Information Engineering Zhejiang University of Technology Hangzhou China

Abstract

AbstractThis article reports and analyzes the results of protein complex model accuracy estimation by our methods (DeepUMQA3 and GraphGPSM) in the 15th Critical Assessment of techniques for protein Structure Prediction (CASP15). The new deep learning‐based multimeric complex model accuracy estimation methods are proposed based on the ensemble of three‐level features coupling with deep residual/graph neural networks. For the input multimeric complex model, we describe it from three levels: overall complex features, intra‐monomer features, and inter‐monomer features. We designed an overall ultrafast shape recognition (USR) to characterize the relationship between local residues and the overall complex topology, and an inter‐monomer USR to characterize the relationship between the residues of one monomer and the topology of other monomers. DeepUMQA3 (Group name: GuijunLab‐RocketX) ranked first in the interface residue accuracy estimation of CASP15. The Pearson correlation between the interface residue Local Distance Difference Test (lDDT) predicted by DeepUMQA3 and the real lDDT is 0.570, the only method that exceeds 0.5. Among the top 5 methods, DeepUMQA3 achieved the highest Pearson correlation of lDDT on 25 out of 39 targets. GraphGPSM (Group name: GuijunLab‐PAthreader) has TM‐score Pearson correlations greater than 0.9 on 14 targets, showing a good ability to estimate the overall fold accuracy. The DeepUMQA3 server is available at http://zhanglab-bioinf.com/DeepUMQA/ and the GraphGPSM server is available at http://zhanglab-bioinf.com/GraphGPSM/.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3