Efficient mapping of RNA‐binding residues in RNA‐binding proteins using local sequence features of binding site residues in protein‐RNA complexes

Author:

Agarwal Ankita12,Kant Shri2,Bahadur Ranjit Prasad2

Affiliation:

1. School of Bio Science Indian Institute of Technology Kharagpur Kharagpur India

2. Computational Structural Biology Laboratory, Department of Biotechnology Indian Institute of Technology Kharagpur Kharagpur India

Abstract

AbstractProtein‐RNA interactions play vital roles in plethora of biological processes such as regulation of gene expression, protein synthesis, mRNA processing and biogenesis. Identification of RNA‐binding residues (RBRs) in proteins is essential to understand RNA‐mediated protein functioning, to perform site‐directed mutagenesis and to develop novel targeted drug therapies. Moreover, the extensive gap between sequence and structural data restricts the identification of binding sites in unsolved structures. However, efficient use of computational methods demanding only sequence to identify binding residues can bridge this huge sequence‐structure gap. In this study, we have extensively studied protein‐RNA interface in known RNA‐binding proteins (RBPs). We find that the interface is highly enriched in basic and polar residues with Gly being the most common interface neighbor. We investigated several amino acid features and developed a method to predict putative RBRs from amino acid sequence. We have implemented balanced random forest (BRF) classifier with local residue features of protein sequences for prediction. With 5‐fold cross‐validations, the sequence pattern derived dipeptide composition based BRF model (DCP‐BRF) resulted in an accuracy of 87.9%, specificity of 88.8%, sensitivity of 82.2%, Mathew's correlation coefficient of 0.60 and AUC of 0.93, performing better than few existing methods. We further validated our prediction model on known human RBPs through RBR prediction and could map ~54% of them. Further, knowledge of binding site preferences obtained from computational predictions combined with experimental validations of potential RNA binding sites can enhance our understanding of protein‐RNA interactions. This may serve to accelerate investigations on functional roles of many novel RBPs.

Funder

Indian Institute of Technology Kharagpur

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3