High‐precision state of charge estimation of lithium‐ion batteries based on improved particle swarm optimization‐backpropagation neural network‐dual extended Kalman filtering

Author:

Chen Lu12ORCID,Wang Shunli12,Chen Lei1,Qiao Jialu12,Fernandez Carlos3

Affiliation:

1. School of Information Engineering Southwest University of Science and Technology Mianyang China

2. College of Electrical Engineering Sichuan University Chengdu China

3. School of Pharmacy and Life Sciences Robert Gordon University Aberdeen UK

Abstract

SummaryHigh‐precision state of charge (SOC) estimation is essential for battery management systems (BMSs). In this paper, a new SOC estimation method is proposed. The dual Kalman filter algorithm and backpropagation neural network (particle swarm optimization ‐ backpropagation neural network ‐ double extended Kalman filter [PSO‐BPNN‐DEKF]) are combined to estimate and correct the SOC of lithium‐ion batteries, in which the initial weight and threshold of the BPNN are optimized by particle swarm optimization algorithm. Based on the second‐order RC equivalent circuit model, parameter identification is carried out using the adaptive forgetting factor least squares (AFFRLS) method. Online parameter updates and SOC estimation are realized by DEKF algorithm. Then, the trained PSO‐BPNN is used to predict the SOC estimation error in real time, and the SOC estimation value is corrected by adding prediction errors. The SOC estimates before and after correction under Beijing Dynamic Stress Test (BBDST), dynamic stress test (DST), and hybrid pulse power characterization (HPPC) were compared. Under BBDST, DST, and HPPC tests, the maximum errors of the corrected SOC estimates are 0.0107, 0.0090, and 0.0147, respectively. The root mean square error (RMSE) of the corrected SOC estimates decreased by 94.02%, 83.18%, and 88.03%, respectively, compared with the extended Kalman filtering (EKF). The mean absolute error (MAE) of the corrected SOC estimates remained around 0.1% for all the BBDST dynamic operating conditions at different temperatures. The experimental results demonstrate the accuracy, effectiveness, and temperature adaptability of the proposed algorithm for SOC estimation under complex conditions of lithium‐ion batteries.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3