Adaptive cooperation control of wind power generation systems based on Hamilton system under limited input

Author:

Wu Zhongqiang1ORCID,Hou Lincheng1

Affiliation:

1. Key Lab of Industrial Computer Control Engineering of Hebei Province Yanshan University Qinhuangdao China

Abstract

SummaryNumerous wind turbines form large‐scale wind farms, which are complex nonlinear systems with uncertain parameters. The issue of maximum wind energy capture and coordinated control has always been a research hotspot. In this article, under the condition of limited input and uncertain parameters, the preset controller and the adaptive cooperation control are designed to realize the maximum wind energy capture for every wind turbine and the adaptive cooperation control of multiple wind turbines. The research gap lies in that the Hamilton model of wind power generation system is established with uncertain parameters, and the preset controller (method) is designed to capture the maximum wind energy. Under the hypothesis that the uncertain part can be expressed as a linear form about unknown parameter, and using the saturation function processing method in the diagonal matrix, an adaptive feedback controller with limited input is designed to realize the adaptive cooperation control of multiple wind turbines. The simulation results show that under the conditions such as variable wind speed, limited input and uncertain parameters, the wind turbine remain normal operation at the desired angular velocity. It can be concluded that not only the maximum wind energy capture is realized under the condition of variable wind speed, in which the wind turbine can operate on the optimal power curve to improve the utilization of wind energy, but also the adaptive cooperation control of multiple wind turbines can be achieved with limited input and parameter perturbation.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3