A Thermally Reconfigurable Photonic Switch Utilizing Drop Cast Vanadium Oxide Nanoparticles on Silicon Waveguides

Author:

Tanyi Gregory1ORCID,Peace Daniel2,Taha Mohammed1,Cheng Elliot3,Hiep Dinh Xuan4,Ren Guanghui4,Lim Christina1,Mitchell Arnan4,Unnithan Ranjith R.1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering Faculty of Engineering and Information Technology The University of Melbourne Parkville VIC 3010 Australia

2. Australian Research Council Centre of Excellence for Engineered Quantum Systems & School of Mathematics and Physics University of Queensland Brisbane QLD 4072 Australia

3. Centre for Microscopy and Microanalysis The University of Queensland, Brisbane St Lucia QLD 4067 Australia

4. Integrated Photonics and Applications Centre School of Engineering RMIT University Melbourne VIC 3000 Australia

Abstract

Photonic switches play a vital role in optical communications and computer networks for establishing and releasing connections of optical signals. With the growing demand for ultra‐compact switches in high‐speed optical computing and communications, thermally reconfigurable optical switches have gained significant attention. These switches offer simplicity, ease of fabrication, and leverage a wide range of thermo‐optic materials. Silicon remains an ideal platform for making photonic devices including the switches due to its compatibility with complementary metal‐oxide‐semiconductor (CMOS) technology and cost‐effectiveness. The article presents a drop cast sub‐stoichiometric vanadium oxide (VO2−x) nanoparticles combined with a silicon ridge waveguide to make a compact thermally reconfigurable optical switch with low transition temperature and accelerated phase transition. Furthermore, the design achieves high modulation depth in addition to its scalability and simplicity. This study demonstrates the potential of solution‐based VO2−x nanoparticles in combination with silicon waveguides for efficient optical switch design for various applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3