Synthetic Fourier Domain Optical Coherence Tomography

Author:

Alexandrov Sergey1ORCID,McAuley Ryan1ORCID,Dey Rajib1ORCID,Arangath Anand1ORCID,Zhou Yi1ORCID,Nolan Andrew1,Owens Peter2ORCID,Leahy Martin1ORCID

Affiliation:

1. Tissue Optics and Microcirculation Imaging Group, Physics School of Natural Sciences University of Galway Galway H91 CF50 Ireland

2. Centre for Microscopy & Imaging University of Galway Galway H91 TK33 Ireland

Abstract

A novel approach for image formation in optical coherence tomography (OCT) and microscopy is presented. The depth resolution of OCT, including recently developed nanosensitive OCT (nsOCT), is limited by the spectral bandwidth of the light source used for illumination. The proposed approach, synthetic OCT (synOCT), permits label‐free, depth‐resolved quantitative visualization of the subwavelength‐sized structures with nanosensitivity. Using synOCT it is possible to estimate the contribution of axial Fourier components of an object's structure in image formation at each small volume within the image. The size of such areas can be smaller than the resolution limit of the imaging system that provides potential for super‐resolution imaging. Visualization of the subwavelength periodic structures and quantitative visualization of the subwavelength internal structures of highly scattering biological samples, within voxels smaller than resolution limit of the imaging system, are demonstrated. In contrast to nsOCT, the trade‐off between spectral and spatial resolution is removed which results in dramatic improvement of both spectral and spatial resolution in synOCT relative to nsOCT.

Funder

HORIZON EUROPE Framework Programme

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Label free nano-sensitive optical imaging beyond resolution limit of the imaging system;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3