Waveguide‐Integrated Two‐Dimensional Material Photodetectors in Thin‐Film Lithium Niobate

Author:

Zhu Sha12ORCID,Zhang Yiwen2,Ren Yi3,Wang Yongji3,Zhai Kunpeng4,Feng Hanke2,Jin Ya4,Lin Zezhou5,Feng Jiaxue1,Li Siyuan3,Yang Qi3,Zhu Ning Hua4,Pun Edwin Yue-Bun2,Wang Cheng2

Affiliation:

1. College of Microelectronics Faculty of Information Technology Beijing University of Technology Beijing 100124 China

2. Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Kowloon Hong Kong 999077 China

3. Department of Chemistry City University of Hong Kong Hong Kong 999077 China

4. State Key Laboratory on Integrated Optoelectronics Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China

5. Department of Applied Physics and Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong 999077 China

Abstract

Thin‐film lithium niobate on insulator (LNOI) is a promising platform for optical communications, microwave photonics, and quantum technologies. While many high‐performance devices like electro‐optic modulators and frequency comb sources have been achieved on LNOI platform, it remains challenging to realize photodetectors (PDs) on LNOI platform using simple and low‐cost fabrication techniques. 2D materials are excellent candidates to achieve photodetection since they feature strong light‐matter interaction, excellent mechanical flexibility, and potential large‐scale complementary metal–oxide–semiconductor‐compatible fabrication. Herein, this demand is addressed using an LNOI‐2D material platform, and two types of high‐performance LNOI waveguide‐integrated 2D material PDs, namely graphene and tellurium (Te), are addressed. Specifically, the LNOI‐graphene PDs feature broadband operations at telecom and visible wavelengths, high normalized photocurrent‐to‐dark current ratios up to 3 × 106 W−1, and large 3‐dB photoelectric bandwidths of ≈40 GHz, simultaneously. The LNOI‐Te PDs on the other hand provide ultrahigh responsivities of 7 A W−1 under 0.5 V bias for telecom signals while supporting GHz frequency responses. The results show that the versatile properties of 2D materials and their excellent compatibility with LNOI waveguides could provide important low‐cost solutions for system operating point monitoring and high‐speed photoelectric conversion in future LNOI photonic integrated circuits.

Funder

Research Grants Council, University Grants Committee

Croucher Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3