Octave‐Spanning Second‐Harmonic Generation in Dispersion‐Engineered Lithium Niobate‐on‐Insulator Microwaveguide

Author:

Tang Yongzhi1ORCID,Ding Tingting2,Zhang Yuting1,Ding Wenjun1,Huang Yiwen1,Wang Jiayu1,Li Hao1,Liu Shijie1,Zheng Yuanlin13ORCID,Chen Xianfeng134ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China

2. School of Electronic and Electrical Engineering Shanghai University of Engineering Science Shanghai 201620 China

3. Shanghai Research Center for Quantum Sciences Shanghai 201315 China

4. Collaborative Innovation Center of Light Manipulations and Applications Shandong Normal University Jinan 250358 China

Abstract

Broadband lasers, e.g., ultrashort lasers, optical supercontinuum, and frequency combs, are revolutionary coherent light sources, which enable a plethora of state‐of‐the‐art applications ranging from precision spectroscopy to optical clocks. However, the spectral broadening of these coherent light sources mainly relies on the third‐order nonlinearity () and is difficult to extend to the visible or shorter wavelength regime. Second‐order nonlinearity (), which is orders of magnitude larger than , becomes a powerful tool for the frequency translation if its broadband operation is well addressed. Herein, an octave‐spanning second‐harmonic generation scheme is experimentally demonstrated beyond an extremely large frequency range of 135 THz and high conversion efficiency of 1% for sub‐100 pJ for the near‐infrared picosecond supercontinuum in a fiber–waveguide–fiber configuration. The process relies on ultrabroadband birefringence phase matching in the dispersion‐engineered lithium niobate‐on‐insulator ridge microwaveguide. The mode area of microwaveguide well matches with single‐mode lens fiber, reducing coupling loss and ensuring easy packaging. The method provides a new approach to span the wavelength range of coherent light with ‐based wavelength translation for supercontinuum or frequency combs into the visible regime. The result would find applications in spectroscopy, astrophysics, atomic optics, optical synthesis, etc.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3