Plasmon‐Enhanced Optical Control of Magnetism at the Nanoscale via the Inverse Faraday Effect

Author:

Parchenko Sergii123ORCID,Hofhuis Kevin124ORCID,Larsson Agne Åberg5,Kapaklis Vassilios5ORCID,Scagnoli Valerio12ORCID,Heyderman Laura Jane12ORCID,Kleibert Armin6ORCID

Affiliation:

1. Laboratory for Mesoscopic Systems Department of Materials ETH Zurich 8093 Zurich Switzerland

2. Laboratory for Multiscale Materials Experiments Paul Scherrer Institute 5232 Villigen PSI Switzerland

3. European XFEL Holzkoppel 4 22869 Schenefeld Germany

4. Laboratory for Nano and Quantum Technologies Paul Scherrer Institute 5232 Villigen PSI Switzerland

5. Department of Physics and Astronomy Uppsala University Box 516 751 20 Uppsala Sweden

6. Swiss Light Source Paul Scherrer Institute 5232 Villigen PSI Switzerland

Abstract

The relationship between magnetization and light has been the subject of intensive research for the past century. Herein, the impact of magnetization on light polarization is well understood. Conversely, the manipulation of magnetism with polarized light is being investigated to achieve all‐optical control of magnetism, driven by potential technological implementation in spintronics. Remarkable discoveries, such as the single‐pulse all‐optical switching of magnetization in thin films and submicrometer structures, have been reported. However, the demonstration of local optical control of magnetism at the nanoscale has remained elusive. Herein, it is demonstrated that exciting gold nanodiscs with circularly polarized femtosecond laser pulses lead to ultrafast, local, and deterministic control of magnetization in an adjacent magnetic film. This control is achieved by exploiting the magnetic moment generated in plasmonic nanodiscs through the inverse Faraday effect. The results pave the way for light‐driven control in nanoscale spintronic devices and provide important insights into the generation of magnetic fields in plasmonic nanostructures.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

HORIZON EUROPE European Research Council

European Cooperation in Science and Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3