Distributed Phase Estimation at the Heisenberg Limit with Classical Light

Author:

Guo Zijian1,Sun Peijie1,Sun Yifan1,Li Qian1,Kong Lingjun1,Zhang Xiangdong1ORCID

Affiliation:

1. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems School of Physics Beijing Institute of Technology Beijing 100081 China

Abstract

Quantum metrology, such as quantum phase estimation, can surpass classical sensing limits, reaching the Heisenberg‐scaling precision. So far, this kind of metrology has been thought to be only implementable with the quantum systems, which, however, are fragile to environmental noise and hardly contribute to the practical detections. Herein, it is demonstrated both theoretically and experimentally that the parameter encoded by the optical phase can also be estimated at the Heisenberg scaling in classical optics. Inspired by the quantum‐entanglement‐enhanced sensing scheme, the estimation is performed by using classically correlated beams as probes, and obtaining the probes readout after their interaction with the target system. Because the correlated beams considered are spatially separable, a distributed phase estimation scheme is given, which can sense the linear combinations of the phase shifts induced by distinct systems. The results of our experiments show an error reduction up to 3.89 dB below the classical limit when the correlated beam number for probing is 6, approaching the Heisenberg limit. Compared with quantum strategies, the proposal shows a better robustness against the environmental disturbance and keeps their performances even when the correlated beam number is relatively large. Hence, it indicates promising practical applications in the future.

Funder

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3