Bulged CH3NH3PbBr3 Microwires for Single‐Mode Lasing

Author:

Wu Wanling1,Luo Zhiqiang1,Xu Tao2,Lun Yipeng1,Deng Jiale1,Huang Xingzhao1,Ye Huanqing34ORCID,Yu Huakang1ORCID,Yang Zhongmin15ORCID

Affiliation:

1. School of Physics and Optoelectronics South China University of Technology Guangzhou 510640 China

2. State Key Laboratory of Luminescent Materials and Devices Institute of Optical Communication Materials Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques South China University of Technology Guangzhou 510640 P. R. China

3. Photon Science Institute Department of Electrical and Electronic Engineering University of Manchester Manchester M13 9PY UK

4. Haina‐Carbon Nanostructure Research Center Yangtze Delta Region Institute of Tsinghua University Jiaxing Zhejiang 314006 P. R. China

5. Future Institute of Technology South China Normal University Guangzhou 510631 P. R. China

Abstract

Herein, the lasing action of fabricated bulged CH3NH3PbBr3 microwires is demonstrated with features of a low threshold, narrow linewidth, single‐mode operation, and high intensity. Benefiting from the bulged end facets, the CH3NH3PbBr3 microwires are feasible for constructing a high‐brightness, whispering‐gallery‐mode(WGM)‐type, and single‐mode laser while suppressing Fabry–Pérot‐type multi‐mode lasing. Numerical simulation unveils that the bulged end facets result in the significantly reduced reflectivity of fundamental waveguided modes. The obtained microlasers require neither complex structures (such as distributed Bragg reflector) nor careful pumping adjustment, suggesting the practical feasibility of a higher single‐mode lasing intensity than conventional WGM perovskite microlasers. The results provide new routes to realize high‐performance perovskite microlasers and their potential application in sensing refractive index.

Funder

National Natural Science Foundation of China

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3