Affiliation:
1. Department of Electrical Engineering National Central University Taoyuan 320 Taiwan
2. Department of Photonics and institute of Electro-Optical Engineering College of Electrical and Computer Engineering National Yang Ming Chiao Tung University Hsinchu 30050 Taiwan
3. Vertically Integrated Systems, GmbH 10623 Berlin Germany
Abstract
Herein, it is shown how the novel layout and arrangement of electrodes of a vertical‐cavity surface‐emitting laser (VCSEL) array can simultaneously improve its high‐speed data transmission performance and the brightness of the output beam. In contrast to the layout of the traditional VCSEL array with its isolated mesas and a single electrode to electrical parallel arrangement of all active elements, the new inverse design can effectively reduce the pitch size between neighboring light emission apertures thereby allowing significant downscaling of the whole active area of the array and high brightness output. Moreover, there are two separate electrodes in demonstrated compact 7 × 7 VCSEL array, one for pure dc current injection and the other for large ac signal modulation. Compared with the single electrode reference device, the demonstrated array shows heavier dampening of the electrical–optical (E–O) frequency response, a wider maximum 3‐dB E–O bandwidth (17 vs 13 GHz), and a Gaussian‐like optical far‐field pattern with a higher brightness output (65.95 vs 40.8 kW cm−2 sr−1), under the same high output power (≈145 mW). The advantages of this novel VCSEL array lead to a much better quality of 32 Gbps eye‐opening with a higher brightness output.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献