Understanding and Hindering the Electron Leakage in Green InP Quantum‐Dot Light‐Emitting Diodes

Author:

Zhang Tianqi12,Zhao Fangqing13ORCID,Liu Pai1,Tan Yangzhi1,Xiao Xiangtian1,Wang Zhaojin1,Wang Weigao1,Wu Dan4,Sun Xiao Wei1,Hao Jianhua3ORCID,Xing Guichuan2,Wang Kai1ORCID

Affiliation:

1. Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering Key Laboratory of Energy Conversion and Storage Technologies Ministry of Education Southern University of Science and Technology Shenzhen 518055 China

2. Institute of Applied Physics and Materials Engineering University of Macau Macau 999078 China

3. Department of Applied Physics The Hong Kong Polytechnic University Hong Kong 999077 China

4. College of New Materials and New Energies Shenzhen Technology University Shenzhen 518118 China

Abstract

Indium phosphide (InP) quantum‐dot light‐emitting diodes (QLEDs) are considered as one of the most promising candidates for emerging displays owing to their good luminous performance and environmentally friendly properties. The operation of green InP QLEDs relies on the radiative recombination of electrically generated excitons, as in most QLEDs; however, the electrons injected into green InP QLEDs can easily pass through the quantum‐dot (QD) layer, resulting in a carrier imbalance and low external quantum efficiency (EQE). Herein, the mechanism of electron leakage in green InP QLEDs is revealed. Based on comparative experiments and simulations of the carrier concentration distribution, the path of electron leakage is determined and it is found that the root cause is the large Fermi energy difference between green InP QDs and indium tin oxide (ITO). To solve this problem, an ultrathin LiF layer is applied to modify the work function of the ITO, which simultaneously hinders electron leakage and enhances hole injection. Benefiting from a more balanced carrier injection, the maximum EQE of green InP QLEDs improves from 4.70% to 9.14%. In these findings, a universal mechanism is provided for hindering electron leakage in green InP QLEDs, indicating the feasibility of developing highly efficient green InP QLEDs.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3