Achievement of Sub‐Diffractive Detection Depth in Absorption Spectroscopy Using Excitation from an Upconverting Particle

Author:

Goswami Jayesh1,Chakraborty Snigdhadev1,Nalupurackal Gokul1,Roy Srestha1,Roy Basudev1ORCID

Affiliation:

1. Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM)‐group IIT Madras Chennai 600036 India

Abstract

Conventionally, a collimated visible laser beam can only be focused to a transverse region volume with a waist of about 200 nm and an axial waist of about 1200 nm due to the wave nature of light. Several techniques have been used to bypass the diffraction limit, including a recently developed one using the emission from an optically trapped upconverting nanoparticle. This nanoparticle has a diameter smaller than 200 nm, such that it emits like a dipole into a 45° cone. Thus, not only is the emission coming from a particle smaller in size than the waist of the diffraction‐limited spot but also the cone is smaller than that of the volume of a very tightly focused beam. Here, the technique is developed even further where the emission coming from a specific region of the cone is selected by an optical fiber‐based pinhole in the detection path. Using this technique, a confocal depth of about 200 nm is achieved as the overlap between the emission cone and the detection volume. This would correspond to a volume of about 250 attoliters for a 1.5 μm diameter particle which can be reduced to 40 attoliters by using a 500 nm diameter particle.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3