A novel battery management scheme for critical loads

Author:

Bandatmakuru Lakshmi Sravan1ORCID,Sandepudi Srinivasa Rao1

Affiliation:

1. Department of Electrical Engineering National Institute of Technology Warangal Warangal India

Abstract

AbstractThis article proposes a novel battery management system (BMS) to ensure uninterruptible power delivery to a 48 V DC bus used for electric vehicle charging stations, data centers, telecommunication systems, and critical care units such as hospitals. The proposed BMS facilitates constant current and constant voltage charging to maintain optimal battery performance during normal operation. This BMS is designed for effective control, monitoring and protection of two lead‐acid battery units to form battery energy storage system (BESS). Furthermore, it is capable of isolating batteries in abnormal conditions and operates them independently to provide reliable supply at output terminals with full capacity. The system utilizes a 30 V DC source derived from AC mains or solar photovoltaic system. This supply is used to charge the BESS and also supply to the load. In the event of failure of 30 V supply, it seamlessly transits to BESS mode to supply power to boost converter to maintain constant 48 V DC output at load terminal. The proposed system architecture not only enhances power reliability but also improves overall system efficiency, making it well‐suited for critical applications require continuous and stable power supply. Simulation studies using Matlab/Simulink and analytical results using TINA (Tool kit for Interactive Network Analysis) are presented to show that 48 V DC supply is maintained at output terminals during failure of input 30 V DC source or failure of one battery unit.

Publisher

Wiley

Reference27 articles.

1. Advanced battery management and diagnostic system for smart grid infrastructure;Elsayed AT;IEEE Trans Smart Grid,2016

2. Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

3. A new control scheme in a multi‐battery management system for expanding microgrids;Babazadeh H;ISGT,2014

4. An SOC-Based Battery Management System for Microgrids

5. Hierarchical energy management scheme for multiple battery-based smart grids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3