Working well with statisticians: Perceptions of practicing statisticians on their most successful collaborations

Author:

Peterson Ryan A.1ORCID,Slade Emily2ORCID,Pomann Gina‐Maria3ORCID,Ambrosius Walter T.4

Affiliation:

1. Department of Biostatistics & Informatics University of Colorado‐Anschutz Medical Campus Aurora Colorado USA

2. Department of Biostatistics University of Kentucky Lexington Kentucky USA

3. Department of Biostatistics and Bioinformatics, School of Medicine Duke University Durham North Carolina USA

4. Department of Biostatistics and Data Science, School of Medicine Wake Forest University Winston‐Salem North Carolina USA

Abstract

Statistical collaboration requires statisticians to work and communicate effectively with nonstatisticians, which can be challenging for many reasons. To identify common themes and lessons for working smoothly with nonstatistician collaborators, two focus groups of primarily academic collaborative statisticians were held. We identified qualities of collaborations that tend to yield fruitful relationships and those that tend to yield nothing (or worse, with one or both parties being dissatisfied). The initial goal was to share helpful knowledge and individual experiences that can facilitate more successful collaborative relationships for statisticians who work within academic statistical collaboration units. These findings were used to design a follow‐up survey to collect perspectives from a wider set of practicing statisticians on important qualities to consider when assessing potential collaborations. In this survey of practicing statisticians, we found widespread agreement on many good and bad qualities to promote and discourage, respectively. Interestingly, some negative and positive collaboration qualities were less agreed upon, suggesting that in such cases, a mix‐and‐match approach of domain experts to statisticians could alleviate friction and statistician burnout in team science settings. The perceived importance of some collaboration characteristics differed between faculty and staff, while others depended on experience.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3