Forecasting healthcare service volumes with machine learning algorithms

Author:

Yang Dong‐Hui1ORCID,Zhu Ke‐Hui1,Wang Ruo‐Nan1

Affiliation:

1. School of Economics and Management Southeast University Nanjing China

Abstract

AbstractAs an efficacious solution to remedying the imbalance of medical resources, the online medical platform has burgeoned expeditiously. Apt allotment of medical resources on the medical platform can facilitate patients in reasonably selecting physicians and time slots, coordinating doctors' clinical arrangements, and generating precise projections of medical platform service volume to enhance patient satisfaction and alleviate physicians' workload. To this end, grounded in the data‐driven method, this paper assembles an exhaustive feature set encompassing hospital features, physician features, and patient features. Through feature selection, appropriate features are screened, and machine learning algorithms are leveraged to accurately forecast doctors' online consultation volume. Subsequently, to glean the influence relationship between online medical services and offline medical services, this paper introduces features of offline medical services such as hospital registration volume and regional gross domestic product (GDP) to solve the prediction of offline medical service volume using online medical information. The findings signify that online data feature prediction can pinpoint superior machine learning models for online medical platform service volume (with the optimal accuracy up to 96.89%). Online features exert a positive effect on predicting offline medical service volume, but the accuracy declines to some degree (the optimal accuracy is 73%). Physicians with favorable reputations on the online platform are more susceptible to attain higher offline appointment volumes when online consultation volume is a vital feature impacting offline appointment volume.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Reference31 articles.

1. Digital health communities: The effect of their motivation mechanisms

2. The relationship between the level of trust and self‐efficacy of hospitalized patients and the behavior of medical decision‐making: Using physician‐patient interactions as the mediator;Chen H.;Chinese Journal of Health Policy,2022

3. The Effects of Online Text Comments on Patients’ Choices: The Mediating Roles of Comment Sentiment and Comment Content

4. A Changing Landscape of Physician Quality Reporting: Analysis of Patients’ Online Ratings of Their Physicians Over a 5-Year Period

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3