An approach based on genetic algorithms and machine learning coupled for studying alloy and molecular clusters by optimizing quantum energy surfaces

Author:

Rezende Umar Lucio1,De Souza Leonardo A.2ORCID,Belchior Jadson C.1

Affiliation:

1. Departamento de Química, ICEx Universidade Federal de Minas Gerais Belo Horizonte Brazil

2. Núcleo de Estudos em Química Inorgânica Teórica (NEQuIT) Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro Brazil

Abstract

AbstractA new genetic algorithm has been proposed focusing on direct ab initio potential energy surface (PES) global minima search. Besides the commonly used operators, this new approach uses an operator to: improve the initial cluster generation, classify and compare all generated clusters, and use machine learning to model the quantum PES used in parallel optimization. Part of the validation process for this methodology was done with ( for ) and (, and 75). The results are in fair agreement with the literature and led to a new global minimum for . A search has been done for the lowest energies of nanoclusters with 2–8 atoms using the DFT approach and for , using DLPNO‐CCSD(T) approach. NQGA successfully performed the MP2 optimizations for cluster. In all cases, the proposed genetic algorithm located the previously reported global minima with very efficient performance. The new proposed methodology makes it possible to optimize cluster geometries directly using high‐level ab initio methods relinquishing any bias introduced by a classical approach. Our results show that this proposed method has great potential applications due to its flexibility and efficiency in identifying global minima in the tested atomic systems.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3