Modeling and performance analysis of a new integrated solid oxide fuel cell and photovoltaic‐thermal energy supply system by heat current method

Author:

Wang Xingce1,Hao Junhong1ORCID,Feng Xiaolong1,Hao Tong1,Sun Jian12,Du Xiaoze1,Liu Kaicheng3,Jin Lu3

Affiliation:

1. Key Laboratory of Power Station Energy Transfer Conversion, Ministry of Education, School of Energy Power and Mechanical Engineering North China Electric Power University Beijing China

2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Ministry of Education, School of Energy Power and Mechanical Engineering North China Electric Power University Beijing China

3. China Electric Power Research Institute Limited Beijing China

Abstract

AbstractEfficient and reliable utilization of renewable energy at the user's end is the key to achieving a low‐carbon life. This paper proposed a new distributed energy system around the comprehensive utilization of solar energy by integrating solid oxide fuel cell (SOFC), energy storage equipment, photovoltaic thermal (PVT) collector, and heat pump. By integrating the use of SOFC and PVT, we can further minimize reliance on fossil fuels, while employing the coupling of PVT and heat pump effectively mitigates the inherent challenges of solar energy's variability and intermittency, all while enhancing overall system efficiency. On this basis, we apply the heat current method to construct a cross‐scale heat current model of the components and the system by considering the energy transfer, conversion, and storage characteristics of the system. By employing this model, we simulate the system's operation throughout an entire typical day, assess the COP enhancement of the PVT‐coupled heat pump system, analyze the influence of diverse operating conditions on daily system performance, and evaluate the economy of the energy storage devices in the system.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3