An acrylic resin system for in‐situ pultrusion: Curing performances and rheology

Author:

Tian Lingyu123,Zhang Puxuan123,Xian Guijun123ORCID

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control Harbin Institute of Technology, Ministry of Education Harbin China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China

3. School of Civil Engineering Harbin Institute of Technology Harbin China

Abstract

AbstractIn recent years, the use of low viscosity and in‐situ polymerizable thermoplastic acrylic resins for advanced fiber reinforced composites has grown, specially to address the difficulty of fiber impregnation with high‐melt viscosity thermoplastic polymers. The present work investigated the curing kinetics, chemo‐rheology of an acrylic resin system for in‐situ pultrusion, and proposed the corresponding constitutive models. First, the curing kinetics was studied with the differential scanning calorimetry experiments. The viscosity development was obtained by a rheometer as functions of the degree of cure (DOC) and temperatures. The gelation point was acquired from the intersection point of storage and loss modulus curves through dynamic mechanical analysis test, which occurs at DOC of 0.65 determined by the cure kinetics model. Through the dynamic mechanical analysis, a four step cure hardening modulus model (modified CHILE approach) was proposed. The aforementioned models were applied in a case study to evaluate the influence of process parameters on the DOC, viscosity and physical behavior of the acrylic resin system in the pultrusion die.Highlights Material characterizations of an acrylic resin system are investigated. The cure kinetics and viscosity and elastic modulus models are proposed. A pultrusion case study is given.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3