Evaluating the influence of working parameters on the efficiency of a solid oxide fuel cell by conducting sensitivity analysis using electrochemical and thermodynamic modeling

Author:

Mouissi Ahmed1ORCID,Touaibi Rabah1,Köten Hasan2

Affiliation:

1. Laboratory of FIMA, Faculty of Science and Technology Khemis Miliana University Khemis Miliana Algeria

2. Istanbul Medeniyet University Mechanical Engineering Department Istanbul Turkey

Abstract

AbstractThis research article presents an investigation conducted through a numerical model to analyze the influence of various operational parameters on the performance of solid oxide fuel cells (SOFCs). The parameters studied include operating temperature, current density, pressure, steam‐to‐carbon ratio, and fuel utilization. The electrochemical model employed the Butler‐Volmer equation, Fick's model, and Ohm's law to calculate concentration, activation, and ohmic losses. The primary focus was on evaluating the generated power and electrical efficiency as performance metrics. The study revealed that increasing operating temperature and pressure resulted in higher power generation and specific optimum points were identified for optimal SOFC operation. Notably, the highest power generated was 812 kW, achieved at an operating temperature of 950 K and a current density of 18100 A/m2. Additionally, decreasing the fuel utilization factor to 55% at 15250 A/m2 led to a power output of 706 kW. Similarly, at a current density of 17150 A/m2 and a pressure of 400 kPa, the fuel cell generated about 780 kW of power. Furthermore, the research demonstrated that reducing the steam‐to‐carbon ratio increased power generation, with an optimum power output of 704 kW achieved at a current density of 16000 A/m2 and a low steam‐to‐carbon ratio. Notably, this point also showcased the improved electrical efficiency of the solid oxide fuel cell. Overall, this study underscores the significance of specific operational factors that significantly impact SOFC performance. By comprehending these parameters, it becomes possible to enhance the utilization of solid oxide fuel cells across various applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3