Simulating variable‐order fractional Brownian motion and solving nonlinear stochastic differential equations

Author:

Samadyar Nasrin1,Ordokhani Yadollah1ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematical Sciences Alzahra University Tehran Iran

Abstract

Stochastic differential equations (SDEs) are very useful in modeling many problems in biology, economic data, turbulence, and medicine. Fractional Brownian motion (fBm) and variable‐order fractional Brownian motion (vofBm) are suitable alternatives to standard Brownian motion (sBm) for describing and modeling many phenomena, since the increments of these processes are dependent of the past and for these increments have the property of long‐term dependence. Classical mathematical techniques such as Ito's calculus do not work for stochastic computations on fBm and vofBm due to they are not semi‐Martingale for . Therefore, solving these equations is much more difficult than solving SDEs with sBm. On the other hand, these equations do not have an analytical solution, so we have to use numerical methods to find their solution. In this paper, a computational approach based on hybrid of block‐pulse and parabolic functions (HBPFs) has been introduced for simulating vofBm and solving a modern class of SDEs. The mechanism of this approach is based on stochastic and fractional integration operational matrices, which transform the intended problem to a nonlinear system of algebraic equations. Thus, the complexity of solving the mentioned problem is reduced significantly. Also, convergence analysis of the expressed method has been theoretically examined. Finally, the accuracy and efficiency of the proposed algorithm have been experimentally investigated through some test problems and comparison of obtained results with results of previous papers. High accurate numerical results are obtained by using a small number of basic functions. Therefore, this method deals with smaller matrices and vectors, which is one of the most important advantage of our suggested method. Also, presenting an applicable procedure to construct vofBm is another innovation of this work. To gain this aim, at first, discretized sBm is generated via fundamental features of this process, and afterward, block‐pulse functions (BPFs) and HBPFs are utilized for simulating discretized vofBm. Finally, spline interpolation method has been employed to provide a continuous path of vofBm.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3