A mechanistic study of the fire performance of the silica and zinc borate nanoparticles‐incorporated intumescent coatings based on epoxy resin

Author:

Dovom‐Niasar Saman Jafari1,Seifi Azadeh2,Bahramian Ahmad Reza1ORCID,Abzal Ali3

Affiliation:

1. Polymer Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran

2. Faculty of Petroleum and Gas Yasuj University Gachsaran Iran

3. Department of Surveying Engineering, Faculty of Engineering University of Isfahan Isfahan Iran

Abstract

AbstractAn epoxy‐based intumescent coating containing the silica and zinc borate nanoparticles was fabricated. The fire performance of the coating with the optimum formulation was investigated in terms of the changes in the physical and chemical structure of the formed char layer during the exposure to a temperature of 1000°C. The state of the chemical structure was analyzed by performing the Fourier‐transform infrared spectroscopy, x‐ray diffraction, and x‐ray photoelectron spectroscopy analysis from the char layer at the three‐time intervals of 10, 30, and 60 min of the heating process. The innovative Condorcet method was also employed to examine the changes in the physical structure of the formed char layer. Some instabilities were detected in the physical structure of the char layer in the middle period of heating. Moreover, a gradual formation of silicon carbide crystalline structure was observed on top of the surface, followed by its oxidation to silica over time. In contrast, in the bulk structure, silicon crystalline structures (Coesite) intensified with time. Boron nitride was also increasingly created on the top surface and in the bulk of the coating over the heating time. These findings proved the effective role of the silica and zinc‐borate nanoparticles in the fire performance of epoxy‐based intumescent coatings.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3