Boosting flame retardancy of thermoplastic polyurethane: Synergistic effect of nickel phosphide nanoparticles and molybdenum disulfide nanosheets

Author:

Feng Xiaming1ORCID,Yang Hongyu1

Affiliation:

1. College of Materials Science and Engineering Chongqing University 174 Shazhengjie, Shapingba Chongqing 400044 China

Abstract

AbstractFor the first time, a novel nanohybrid based on nickel phosphide (Ni2P) nanoparticles and molybdenum disulfide (MoS2) nanosheets was facilely synthesized for enhancing flame retardancy and smoke suppression of thermoplastic polyurethane (TPU). The synergistic effect on flame retardancy is proposed. TPU composite with 2 wt% Ni2P/MoS2 hybrid exhibits the best overall flame retardancy, while TPU composites with the same amount of individual Ni2P nanoparticles and MoS2 nanosheets are average in performance. Specifically, the 41.2% reduction of peak heat release rate (PHRR) is achieved for TPU/Ni2P/MoS2 composite, which is only 16.8% and 26.4% for TPU/Ni2P and TPU/MoS2 composites, respectively. In addition, a more intact protective char layer of TPU/Ni2P/MoS2 composite can be observed. These results clearly suggest the synergistic effect between Ni2P nanoparticles and MoS2 nanosheets. It is hypothesized that physical barrier effect and chemical catalytic ability of Ni2P/MoS2 hybrid contribute to the dramatic reduction of heat release and smoke production. The strategy proposed here is a simple yet efficient approach to fabricate high‐performance MoS2‐based flame retardants.

Funder

State Key Laboratory of High Performance Civil Engineering Materials

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3