Multi‐Task Residential Short‐Term Load Prediction Based on Contrastive Learning

Author:

Zhang Wuqing1,Li Jianbin1,Wu Sixing1,Guo Yiguo2

Affiliation:

1. School of Control and Computer Engineering North China Electric Power University Beijing China

2. Economic Technology Research Institute State Grid Shandong Electric Power Company Jinan City Shandong Province China

Abstract

AbstractLoad forecasting is crucial for the operation and planning of electricity generation, transmission, and distribution. In the context of short‐term electricity load prediction for residential users, single‐task learning methods fail to consider the relationship among multiple residential users and have limited feature extraction capabilities for residential load data. It is challenging to obtain sufficient information from individual residential user load predictions, resulting in poor prediction performance. To address these issues, we propose a framework for multi‐task residential short‐term load prediction based on contrastive learning. Firstly, clustering techniques are used to select residential users with similar electricity consumption patterns. Secondly, contrastive learning is employed for pre‐training, extracting trend and seasonal feature representations of load sequences, thereby enhancing the feature extraction capability for residential load Feature. Lastly, a multi‐task learning prediction framework is utilized to learn shared information among multiple residential users' loads, enabling short‐term load prediction for multiple residences. The proposed load prediction framework has been implemented on two real‐world load data sets, and the experimental results demonstrate that it effectively reduces the prediction errors for residential load prediction. © 2024 Institute of Electrical Engineer of Japan and Wiley Periodicals LLC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3