Octylammonium Iodide Induced In‐situ Healing at “perovskite/Carbon” Interface to Achieve 85% RH‐moisture Stable, Hole‐Conductor‐Free Perovskite Solar Cells with Power Conversion Efficiency >19%

Author:

Lin Siyuan1,Fang Zhenxing1,Ma Jiao1,Guo De'en1,Yu Xiaohan1,Xie Haipeng1ORCID,Fang Mei1ORCID,Zhang Dou2ORCID,Zhou Kechao2,Gao Yongli3ORCID,Zhou Conghua1ORCID

Affiliation:

1. Hunan Key Laboratory of Super‐microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super‐microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics and Electronics Central South University Changsha Hunan 410083 P. R. China

2. State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute Central South University Changsha Hunan 410083 P. R. China

3. Department of Physics and Astronomy University of Rochester Rochester NY 14627 USA

Abstract

Abstract“Perovskite/carbon” interface is a bottle‐neck for hole‐conductor‐free, carbon‐electrode basing perovskite solar cells due to the energy mismatch and concentrated defects. In this article, in‐situ healing strategy is proposed by doping octylammonium iodide into carbon paste that used to prepare carbon‐electrode on perovskite layer. This strategy is found to strengthen interfacial contact and reduce interfacial defects on one hand, and slightly elevate the work function of the carbon‐electrode on other hand. Due to this effect, charge extraction is accelerated, while recombination is obviously reduced. Accordingly, power conversion efficiency of the hole‐conductor‐free, planar perovskite solar cells is upgraded by ≈50%, or from 11.65 (± 1.59) % to 17.97 (± 0.32) % (AM1.5G, 100 mW cm−2). The optimized device shows efficiency of 19.42% and open‐circuit voltage of 1.11 V. Meanwhile, moisture‐stability is tested by keeping the unsealed devices in closed chamber with relative humidity of 85%. The “in‐situ healing” strategy helps to obtain T80 time of >450 h for the carbon‐electrode basing devices, which is four times of the reference ones. Thus, a kind of “internal encapsulation effect” has also been reached. The “in situ healing” strategy facilitates the fabrication of efficient and stable hole‐conductor‐free devices basing on carbon‐electrode.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

National Science Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3