Enhancing Total Optical Throughput of Microscopy with Deep Learning for Intravital Observation

Author:

Chen Runze1ORCID,Peng Shiyi1,Zhu Liang2,Meng Jia1,Fan Xiaoxiao1,Feng Zhe13,Zhang Hequn1,Qian Jun13ORCID

Affiliation:

1. College of Optical Science and Engineering State Key Laboratory of Modern Optical Instrumentations International Research Center for Advanced Photonics Centre for Optical and Electromagnetic Research Zhejiang University 310058 Hangzhou China

2. College of Biomedical Engineering and Instrument Science Interdisciplinary Institute of Neuroscience and Technology (ZIINT) Zhejiang University 310027 Hangzhou China

3. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 310058 Hangzhou China

Abstract

AbstractThe significance of performing large‐depth dynamic microscopic imaging in vivo for life science research cannot be overstated. However, the optical throughput of the microscope limits the available information per unit of time, i.e., it is difficult to obtain both high spatial and temporal resolution at once. Here, a method is proposed to construct a kind of intravital microscopy with high optical throughput, by making near‐infrared‐II (NIR‐II, 900–1880 nm) wide‐field fluorescence microscopy learn from two‐photon fluorescence microscopy based on a scale‐recurrent network. Using this upgraded NIR‐II fluorescence microscope, vessels in the opaque brain of a rodent are reconstructed three‐dimensionally. Five‐fold axial and thirteen‐fold lateral resolution improvements are achieved without sacrificing temporal resolution and light utilization. Also, tiny cerebral vessel dilatations in early acute respiratory failure mice are observed, with this high optical throughput NIR‐II microscope at an imaging speed of 30 fps.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3