Laser‐Synthesized Co‐Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses

Author:

Jung Sieon1,Senthil Raja Arumugam1,Min Ahreum2,Kumar Anuj3,Moon Cheol Joo2,Choi Myong Yong12ORCID

Affiliation:

1. Department of Chemistry (BK21 FOUR) Research Institute of Natural Sciences Gyeongsang National University Jinju 52828 Republic of Korea

2. Core‐Facility Center for Photochemistry & Nanomaterials Gyeongsang National University Jinju 52828 Republic of Korea

3. Nano‐Technology Research Laboratory Department of Chemistry GLA University Mathura Uttar Pradesh 281406 India

Abstract

AbstractThe present study details the strategic development of Co‐doped CuO nanostructures via sophisticated and expedited pulsed laser ablation in liquids (PLAL) technique. Subsequently, these structures are employed as potent electrocatalysts for the anodic methanol oxidation reaction (MOR), offering an alternative to the sluggish oxygen evolution reaction (OER). Electrochemical assessments indicate that the Co–CuO catalyst exhibits exceptional MOR activity, requiring a reduced potential of 1.42 V at 10 mA cm–2 compared to that of pure CuO catalyst (1.57 V at 10 mA cm–2). Impressively, the Co–CuO catalyst achieved a nearly 180 mV potential reduction in MOR compared to its OER performance (1.60 V at 10 mA cm−2). Furthermore, when pairing Co–CuO(+)ǀǀPt/C(−) in methanol electrolysis, the cell voltage required is only 1.51 V at 10 mA cm−2, maintaining remarkable stability over 12 h. This represents a substantial voltage reduction of ≈160 mV relative to conventional water electrolysis (1.67 V at 10 mA cm−2). Additionally, both in situ/operando Raman spectroscopy studies and theoretical calculations have confirmed that Co‐doping plays a crucial role in enhancing the activity of the Co–CuO catalyst. This research introduces a novel synthetic approach for fabricating high‐efficiency electrocatalysts for large‐scale hydrogen production while co‐synthesizing value‐added formic acid.

Funder

Korea Basic Science Institute

National Research Foundation of Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3