Unraveling the Degradation Pathway of Inverted Perovskite Solar Cells Based on ISOS‐D‐1 Protocol

Author:

Li Bowei1,Deng Jun2,Jayawardena K. D. G. Imalka1,Liu Xueping1,Xiang Yuren1,Ren Aobo3,Oluwabi Abayomi Titilope1,Hinder Steven4,Putland Benjamin5,Watts John F.4,Li Hui12,Du Shixuan2,Silva S. Ravi P.1,Zhang Wei1ORCID

Affiliation:

1. Advanced Technology Institute Department of Electrical and Electronic Engineering University of Surrey Guildford GU2 7XH UK

2. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China

4. The Surface Analysis Laboratory Department of Mechanical Engineering Sciences University of Surrey Guildford Surrey GU2 7XH UK

5. Clarendon Laboratory Department of Physics University of Oxford Oxford OX1 3PU UK

Abstract

AbstractPerovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf‐life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS‐D‐1). During the long‐term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short‐circuit current density (71% retention), while the open‐circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear‐contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

Funder

China Scholarship Council

National Key Research and Development Program of China

State Key Laboratory of Metastable Materials Science and Technology

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3