Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery

Author:

Lu Tiemei1ORCID,Javed Sadaf1ORCID,Bonfio Claudia2ORCID,Spruijt Evan1ORCID

Affiliation:

1. Institute for Molecules and Materials Radboud University Nijmegen 6525 AJ The Netherlands

2. Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg Strasbourg 67083 France

Abstract

AbstractCompartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase‐separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase‐separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.

Funder

China Scholarship Council

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3