Strain Field Around Individual Dislocations Controls Failure

Author:

Gammer Christoph1ORCID,Issa Inas2,Minor Andrew M.34ORCID,Ritchie Robert O.345ORCID,Kiener Daniel2ORCID

Affiliation:

1. Erich Schmid Institute of Materials Science Austrian Academy of Sciences Jahnstrasse 12 Leoben A‐8700 Austria

2. Department Materials Science Chair of Materials Physics Montanuniversität Leoben Jahnstrasse 12 Leoben A‐8700 Austria

3. National Center for Electron Microscopy Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Department of Materials Science & Engineering University of California Berkeley CA 94720 USA

5. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

AbstractUnderstanding material failure on a fundamental level is a key aspect in the design of robust structural materials, especially for metals and alloys capable to undergo plastic deformation. In the last decade, significant progress is made in quantifying the stresses associated with failure in both experiments and simulations. Nonetheless, the processes occurring on the most essential level of individual dislocations that govern semi‐brittle and ductile fracture are still experimentally not accessible, limiting the failure prediction capabilities. Therefore, in the present work, a one‐of‐a‐kind nanoscale fracture experiment is conducted on a single crystalline Cr bending beam in situ in the transmission electron microscope and for the first time quantify the transient strains around individual dislocations, as well as of the whole dislocation network during crack opening. The results reveal the importance of both pre‐existing and newly emitted dislocations for crack‐tip shielding via their intrinsic strain field and provide guidelines to design more damage tolerant materials.

Funder

Austrian Science Fund

European Research Council

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Materials Sciences and Engineering Division

Lawrence Berkeley National Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3