Fully Active Delivery of Nanodrugs In Vivo via Remote Optical Manipulation

Author:

Liu Xiaoshuai1,Wu Shuai1,Wu Huaying1,Zhang Tiange1,Qin Haifeng1,Lin Yufeng1,Li Baojun1,Jiang Xiqun2,Zheng Xianchuang1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Manipulation Institute of Nanophotonics Jinan University Guangzhou 511443 China

2. College of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China

Abstract

AbstractThe active delivery of nanodrugs has been a bottleneck problem in nanomedicine. While modification of nanodrugs with targeting agents can enhance their retention at the lesion location, the transportation of nanodrugs in the circulation system is still a passive process. The navigation of nanodrugs with external forces such as magnetic field has been shown to be effective for active delivery, but the existing techniques are limited to specific materials like magnetic nanoparticles. In this study, an alternative actuation method is proposed based on optical manipulation for remote navigation of nanodrugs in vivo, which is compatible with most of the common drug carriers and exhibits significantly higher manipulation precision. By the programmable scanning of the laser beam, the motion trajectory and velocity of the nanodrugs can be precisely controlled in real time, making it possible for intelligent drug delivery, such as inverse‐flow transportation, selective entry into specific vascular branch, and dynamic circumvention across obstacles. In addition, the controlled mass delivery of nanodrugs can be realized through indirect actuation by the microflow field. The developed optical manipulation method provides a new solution for the active delivery of nanodrugs, with promising potential for the treatment of blood diseases such as leukemia and thrombosis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3